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Abstract
We predict and analyse a novel spin filter in semiconducting carbon nanotubes.
By using local electrostatic gates, the conduction and valence bands can be
modulated to form a double-barrier structure. The confined region below the
valence band defines a Zener quantum dot, which exhibits resonant tunnelling.
The resonances split in a magnetic field to make a bipolar spin filter for
applications in spintronics and quantum information processing. We model this
using �k · �p envelope function theory and show that this is in excellent agreement
with a corresponding tight-binding calculation.

A spin filter based on electrostatic gating of single-wall carbon nanotubes (SWCNTs) may have
significant advantages over alternative approaches, based on spin injection from ferromagnetic
contacts [1, 2]. Experimental techniques are now well established for placing source drain
contacts at each end of a carbon nanotube and using a side gate to control electron transport.
Such devices exhibit Coulomb blockade in metallic [3, 4] and semiconducting [5] SWCNTs,
and field-effect transistor action [6, 7] at room temperature. Electrical conductance through
near ideal ohmic contacts has been predicted [8] and shown experimentally to exhibit ballistic
conductance close to the clean quantum limit of 4e2/h [9, 10, 7]. Electron interference was
first demonstrated in metallic SWCNTs [9, 10] and more recently within the conduction band
of semiconducting SWCNTs [5], where the existence of Schottky barriers posed additional
difficulties with contact resistance [7]. The Kondo effect has been exhibited in metallic
SWCNTs [11] and optical emission from ambipolar FETs has been demonstrated [12]. All
these devices have used global gating along the entire length of the active part of the nanotube.
Local gating of carbon nanotubes has been demonstrated with split gates, finger gates, and
top gates fabricated by lithographic means [13–16]. Through local gating, the nanotube can
be made to function as a pn-junction diode without modulation doping by using two closely
spaced finger gates, which are positively and negatively charged with respect to source–drain
contacts [17]. Top gates have been used to form and control a double quantum dot [16].

In this paper we demonstrate that local gating also opens up the possibility of spin filtering
via Zener tunnelling. Although Zener tunnelling has yet to be demonstrated in semiconducting
SWCNTs, our calculations show that there is no fundamental obstacle to its observation. The
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Figure 1. Schematic diagram of Zener resonant tunnelling. In the gated region there are quasi-
bound states below the valence band. An incident electron with the same energy as one of these
levels will be resonantly transmitted through.

Figure 2. Schematic diagram of the setup of gates and electrodes. A pair of source and drain
contacts is attached to the nanotube (centre line). Three pairs of split gates are situated in the top
and bottom part of the figure. Under the surface there is also a global back gate which cannot be
seen in the diagram.

main challenge is to achieve sufficiently localized electric fields along the nanotubes, through
which an electron can tunnel elastically between valence and conduction bands. If a locally
gated semiconducting SWCNT is gated negatively with respect to adjacent electrodes, the
electrostatic field bends the energy bands upwards in the region of the gate, leading to a double
Zener tunnelling structure and the formation of quasi-bound states, as illustrated in figure 1.
In equilibrium these are occupied by holes above the Fermi level at low temperatures. If an
electron in the conduction band has energy corresponding to one of the quasi-bound states,
resonant tunnelling will occur. The resulting structure is essentially a quantum dot (QD), since
there is confinement in all three spatial dimensions. We emphasize that our Zener QD, inspired
by previous work on a single-electron transistor [18], is an original idea which may have several
applications in addition to our suggested spin filter. Unlike in a conventional dot, both the
conduction and valence bands form the two confinement barriers using a single gate electrode.
These barriers provide an opportunity to avoid any material interfaces which generally inhibit
electron coherence effects. The gate electrode can be realized by using a local split gate [13].
For practical implementation we consider three split gates, as shown in figure 2, in which the
outer two are initially held at the same potential as the global back gate. Their purpose is to
confine the electrostatic potential, enabling higher electric fields along the nanotube. Split gates
of this kind have already been fabricated for multiwalled nanotubes [13]. These gates can be
produced down to a width and lateral separation of order 20 nm, so that a few volts applied to
the electrodes give local fields of up to 2 MV cm−1 to enable Zener tunnelling.
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In a perfect sheet of graphene there are two inequivalent Fermi points in the first Brillouin
zone with wavevectors �K , �K ′. These Fermi points are uncoupled in our system since the
applied potential varies slowly on an atomic scale, and we can therefore apply �k · �p envelope
function theory to the two Fermi points independently. To derive an effective Hamiltonian
we first expand the single-particle π -orbital Hamiltonian around an arbitrary Fermi point of
graphene [19]. The dispersion for wavevectors close to this Fermi point is then given by the
effective Hamiltonian:

H (0) = −ih̄vF �σ · �∂, (1)

where {σi }i=x,y are the Pauli matrices, and −i�∂ = −i(∂x , ∂y)
T is the electron quasimomentum

operator along and around the nanotube. The pseudo-spin �σ connects the A and B sublattices
and accounts for both conduction and valence subbands with the real spin giving rise to further
degeneracy which we do not consider explicitly yet. This Hamiltonian is identical to Weyl’s
Hamiltonian with two spatial dimensions, and solution of the corresponding Schrödinger
equation with plane waves yields directly the energy dispersion,

ε(kx , ky) = ±h̄vF

√
k2

x + k2
y, (2)

which is the familiar light-cone in which the speed of light has been replaced by the Fermi
velocity of graphene, vF ≈ (1/300)c. In SWCNTs ky is quantized. For metallic nanotubes
ky = 0 is allowed and equation (2) yields the characteristic linear dispersion, ε(kx) = h̄vFkx

of massless particles. In a semiconducting zigzag nanotube the lowest quantized ky is finite
and may be positive or negative, where the sign reflects the choice of Fermi point. From
equation (2) with kx = 0, we see directly that ky = ±Eg/2h̄vF, and hence the dispersion in
the x-direction has the relativistic form of particles with rest mass (effective mass) Eg/2v2

F.
We only consider the lowest quantized bands since we will later show that Zener tunnelling
through higher bands is negligible due to larger band separations. These energy dispersions
and the effective Hamiltonian (1) incorporate the rapidly varying atomic potentials due to the
carbon atoms. Envelope function theory allows us to simply add to this the slowly varying
applied potential, V (x), to yield an effective Hamiltonian for the whole system, which is valid
for the conduction and valence bands close to the Fermi energy. Since V is independent of y we
may integrate out the y-motion for the lowest transverse channels, yielding the one-dimensional
effective Hamiltonians,

H± = −ih̄vFσx∂x ± Eg

2
σy + eV (x)I, (3)

where the positive and negative signs correspond to clockwise and anticlockwise motion around
the tube respectively, and I is the unit matrix. We need only solve the Schrödinger equation
for one of these cases since the degenerate sets of solutions are related by the transformation
ψ− = σxψ+. By solving Laplace’s equation the potential V (x) for the gate configuration
shown in figure 2 can be represented by the convenient analytic form

V (x) = V0 cos2
(πx

4a

)
, (4)

to a good approximation. For the simulations described below, we have used the potential
parameters V0 = 4 V and a = 20 nm. We have assumed that there is no potential gradient
transverse to the nanotube, which is a good approximation due to the symmetry of the split
gates and the high ratio of gate width to tube diameter.

We have solved the one-electron scattering problem using a nearest-neighbour finite-
difference method, and then have calculated the low-bias conductance from the tunnelling

transmission probability using the Landauer–Büttiker formula, G = 2e2

h Tr t t† ≡
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Figure 3. Conductance as a function of single-electron energy in a (19, 0)-nanotube. (a) Small bias
conductance derived from �k · �p envelope function theory. The local gating has produced several
sharp resonances. (b) Small bias conductance at low energy comparing resonances from �k · �p
envelope function theory calculations (dashed line) and tight-binding calculations (solid line). Note
that the tight-binding resonances confirm that only two channels contribute to the transmission.

2e2

h N(E)T (E), where N(E) is the number of open channels and T (E) is the average
transmission probability per channel. In figure 3(a), we show results for the dimensionless
conductance in the presence of the gate potential, obtained using the �k · �p envelope function
approach. This shows clear Zener resonances as a function of the electron energy E . As a check
on the validity of this long-wavelength approximation, we have computed the conductance
using a tight-binding model using a recursive Green function approach [20] including all π -
orbital bands from the quantization of the graphene lattice. The resulting Zener resonances
from the two methods are compared in figure 3(b), where we have zoomed the energy to
show the separation and shape of two resonances at low energy. The agreement is remarkable,
with the very small deviations between the two methods arising from the difference in energy
dispersion for high kx -values on the dot. In these calculations, four open channels are present
(N(E) = 4) for the chosen energy range, but only the lowest conduction and highest valence
bands contribute to the resonant transport (N(E) = 2), with almost total reflection from all
other bands.

We can gain insight into these results by an approximate Breit–Wigner analysis of
resonances through the two Zener barriers, which are described by the equation

T (E) = (�n/2)2

(�n/2)2 + (E − En)2
, (5)

where En is the resonance energy of the nth quasi-bound state and �n is the corresponding
half-width. The latter can be estimated using a triangular potential [21] within the semiclassical
WKB approximation [22]. For a nanotube with band gap Eg, the resonance width becomes

�n = β(En) exp

(
− 4Eg

3h̄vF
w(En)

)
, (6)

where the tunnel barrier width is w(En) = L+ − L−, with classical turning points

L± ≡ 4a
π

arccos
√

En∓Eg/2
eV0

. The prefactor β(En) ≈ hv̄x (En)/L(En) mostly depends on
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Figure 4. The width of a resonance is plotted as a function of the single particle energy at the
resonance. The (+) markings represent the widths for the resonances calculated numerically using
�k · �p envelope function theory. The solid line is an estimate of the widths derived analytically using
the WKB approximation. In this figure the widths are calculated for a (19, 0)-nanotube.

the resonance energy via the confinement length L(En) = 2L−. v̄x is the average group
velocity along the nanotube direction. In figure 4, we have compared the resonance widths
from equation (6) with the numerical widths derived from the �k · �p results (cf figure 3(a)). In
order to be resolved, the widths �n of the resonances must be larger than the thermal energy
kBT . For our chosen potential (see equation (4)), the temperature of (19, 0)-nanotubes must
not be higher than of order 2–3 K at the conduction band edge. The precise requirement is
sensitive to the potential shape at low energies. Generally, larger-diameter nanotubes with
smaller band gaps exhibit larger resonance widths in accordance with equation (6). The band
gap dependence is in fact the reason why Zener resonant tunnelling through higher subbands is
strongly suppressed.

The location of the resonance energies En may also be estimated using the WKB
approximation, through

(n + 1
2 )π =

∫ L−

−L−
kn(x) dx . (7)

Apart from the turning points, where the wavevector is small and the integral is negligible, the
energy dispersion is mainly in the linear regime, ε(kx) ≈ −h̄vFkx . Writing the total energy as
a sum of kinetic and potential energy, E = ε + eV , where the potential energy is the applied
potential in equation (4), allows us to integrate equation (7):

h̄vF

(
n + 1

2

)
π = 4a

π

√(
En + Eg

2

) (
eV0 − En − Eg

2

)
+ (eV0 − 2En − Eg)L−. (8)

If we Taylor expand the applied potential, V (x) ≈ V0[1 − (πx/4a)2], and then integrate
equation (7), we can solve for the resonance energies:

En = eV0 − Eg

2
−

(
3h̄vF

√
eV0(n + 1

2 )π
2

16a

)2/3

. (9)

As a consequence of the linear dispersion, the resonance energies are En ∼ n2/3 instead
of the usual En ∼ n, for large n. This phenomenon can be seen in figure 3(a), where
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Figure 5. Spin-dependent resonances. The dashed curve shows a resonance with the width 0.2 meV.
The left (right) solid curve show the spin up (down) resonance arising when a transverse magnetic
field of 5 tesla is applied.

the resonances become more closely spaced towards the left of the diagrams, corresponding
to increasing kinetic energies in the valence band. We now demonstrate that the above
Zener tunnelling effect opens up the possibility of spin filtering for possible applications in
quantum information processing, as has been suggested for unipolar quantum dots [23]. In
a uniform transverse magnetic field spin up/down electrons each experience their own set of
resonances separated by gµB B ≈ 0.29 meV for g ≈ 2 (cf [5]) and B = 5 T. In figure 5 we
have shown this for a resonance width of 0.2 meV. For these parameters, the polarization is
P = (T↑ − T↓)/(T↑ + T↓) ≈ 80%. Higher polarizations can be achieved by using narrower
resonances.

This new spin filter has advantages over spin injection from ferromagnetic contacts, since
spin-memory loss due to interface scattering at interfaces is avoided. Local gating also allows
complementary devices using electron- or hole-conduction, which may be advantageous if CN-
based electronics is ever to form a basis for future nanoscale CMOS technology.

Finally we remark that Coulomb repulsion between the holes on the Zener QD will modify
the resonant level structure. This shifts the energy levels and, in particular, introduces an
energy difference between electrons of opposite spin in the same orbital state. In this sequential
tunnelling regime the number of holes in the Zener dot will fluctuate between even and odd,
giving rise to a single-electron current from source to drain. Consider a number of holes n of the
dot. The hole levels will be occupied down to the resonant level. An electron can resonantly
Zener tunnel into the hole state (equivalent to the hole tunnelling from the dot to the source
lead) leaving the dot with n − 1 holes. A further electron cannot tunnel into the dot since
there will no longer be an available state to occupy. Due to the resonant tunnelling the electron
will then preferentially tunnel from the dot into the drain lead giving rise to a single-electron
transfer from source to drain.

The presence of the Zener resonances could be demonstrated experimentally using a back
gate to change the Fermi energy which may be tuned to the resonances. The source–drain
voltage should be sufficiently small in order that the electrons do not exceed the optic phonon
threshold of approximately 160 meV. In addition to semiconducting nanotubes, one may also
attempt to use quasi-metallic nanotubes with much smaller bandgaps induced by curvature.
These have even smaller tunnel barriers, and consequently larger resonances which may be
easier to observe.
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